Solving matrix models using holomorphy
نویسنده
چکیده
We investigate the relationship between supersymmetric gauge theories with moduli spaces and matrix models. Particular attention is given to situations where the moduli space gets quantum corrected. These corrections are controlled by holomorphy. It is argued that these quantum deformations give rise to non-trivial relations for generalized resolvents that must hold in the associated matrix model. These relations allow to solve a sector of the associated matrix model in a similar way to a one-matrix model, by studying a curve that encodes the generalized resolvents. At the level of loop equations for the matrix model, the situations with a moduli space can sometimes be considered as a degeneration of an infinite set of linear equations, and the quantum moduli space encodes the consistency conditions for these equations to have a solution.
منابع مشابه
An interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملAn Introduction to Supersymmetric Gauge Theories and Matrix Models
We give an introduction to the recently established connection between supersymmetric gauge theories and matrix models. We begin by reviewing previous material that is required in order to follow the latest developments. This includes the superfield formulation of gauge theories, holomorphy, the chiral ring, the Konishi anomaly and the large N limit. We then present both the diagrammatic proof ...
متن کاملMathematical Programming Models for Solving Unequal-Sized Facilities Layout Problems - a Generic Search Method
This paper present unequal-sized facilities layout solutions generated by a genetic search program named LADEGA (Layout Design using a Genetic Algorithm). The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computa...
متن کاملOn the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
متن کاملBernoulli matrix approach for matrix differential models of first-order
The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003